Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Signatures of self-organized criticality in an ultracold atomic gas.

Nature 2020 January
Self-organized criticality is an elegant explanation of how complex structures emerge and persist throughout nature1 , and why such structures often exhibit similar scale-invariant properties2-9 . Although self-organized criticality is sometimes captured by simple models that feature a critical point as an attractor for the dynamics10-15 , the connection to real-world systems is exceptionally hard to test quantitatively16-21 . Here we observe three key signatures of self-organized criticality in the dynamics of a driven-dissipative gas of ultracold potassium atoms: self-organization to a stationary state that is largely independent of the initial conditions; scale-invariance of the final density characterized by a unique scaling function; and large fluctuations of the number of excited atoms (avalanches) obeying a characteristic power-law distribution. This work establishes a well-controlled platform for investigating self-organization phenomena and non-equilibrium criticality, with experimental access to the underlying microscopic details of the system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app