JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

The contribution of olfactory receptor neurons to the perception of pheromone component ratios in male redbanded leafroller moths.

(Z)-11-tetradecenyl acetate (Z-11, 14:AC) must be in a 100:9 ratio with (E)-11-tetradecenyl acetate (E-11,14:AC) to produce maximal wing fanning and attraction in male redbanded leafrollers. Earlier electrophysiological studies had indicated that mixtures of these pheromone components elicited responses from olfactory receptor neurons that appeared to differ from those expected on the basis of the responses to the individual components. Here we evaluate whether the behavioral sensitivity to particular ratios of Z- and E-11,14:AC has a correlate in the response properties of olfactory receptor neurons. The stimuli included the ratios of Z- and E-11,14:AC used in earlier behavioral work plus several different mixtures of the seven components found in the pheromone blend, and equivalent amounts of the individual components. These stimuli were presented over a range of intensities to individual trichoid sensilla on the male antenna. In common with earlier results, the receptor neuron with the larger amplitude action potential responded most strongly to Z-11,14:AC, whereas the companion receptor neuron in the sensillum responded most strongly to E-11,14:AC. In contrast with earlier results, each receptor neuron responded exclusively to its own most effective stimulus, without regard to the presence of any other compound. They failed to respond uniquely to any of the other five compounds in the female pheromone blend, or to any of the tested combinations of these compounds. These minor components also failed to modulate the responses elicited in receptor neurons by appropriate ratios of Z- and E-11,14:AC. Thus, the responses of the two types of olfactory receptor neurons found in trichoid sensilla failed to show an optimum at the pheromone ratio known to elicit peak behavioral activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app