Add like
Add dislike
Add to saved papers

An unbiased and efficient assessment of excitability of sensory neurons for analgesic drug discovery.

Pain 2020 May
Alleviating chronic pain is challenging, due to lack of drugs that effectively inhibit nociceptors without off-target effects on motor or central neurons. Dorsal root ganglia (DRG) contain nociceptive and non-nociceptive neurons. Drug screening on cultured DRG neurons, rather than cell lines, allows for the identification of drugs most potent on nociceptors with no effects on non-nociceptors (as a proxy for unwanted side effects on central nervous system and motor neurons). However, screening using DRG neurons is currently a low-throughput process, and there is a need for assays to speed this process for analgesic drug discovery. We previously showed that veratridine elicits distinct response profiles in sensory neurons. Here, we show evidence that a veratridine-based calcium assay allows for an unbiased and efficient assessment of a drug effect on nociceptors (targeted neurons) and non-nociceptors (nontargeted neurons). We confirmed the link between the oscillatory profile and nociceptors, and the slow-decay profile and non-nociceptors using 3 transgenic mouse lines of known pain phenotypes. We used the assay to show that blockers for Nav1.7 and Nav1.8 channels, which are validated targets for analgesics, affect non-nociceptors at concentrations needed to effectively inhibit nociceptors. However, a combination of low doses of both blockers had an additive effect on nociceptors without a significant effect on non-nociceptors, indicating that the assay can also be used to screen for combinations of existing or novel drugs for the greatest selective inhibition of nociceptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app