Add like
Add dislike
Add to saved papers

A polygenic and phenotypic risk prediction for Polycystic Ovary Syndrome evaluated by Phenome-wide association studies.

CONTEXT: As many as 75% of patients with Polycystic ovary syndrome (PCOS) are estimated to be unidentified in clinical practice.

OBJECTIVE: Utilizing polygenic risk prediction, we aim to identify the phenome-wide comorbidity patterns characteristic of PCOS to improve accurate diagnosis and preventive treatment.

DESIGN, PATIENTS, AND METHODS: Leveraging the electronic health records (EHRs) of 124,852 individuals, we developed a PCOS risk prediction algorithm by combining polygenic risk scores (PRS) with PCOS component phenotypes into a polygenic and phenotypic risk score (PPRS). We evaluated its predictive capability across different ancestries and perform a PRS-based phenome-wide association study (PheWAS) to assess the phenomic expression of the heightened risk of PCOS.

RESULTS: The integrated polygenic prediction improved the average performance (pseudo-R2) for PCOS detection by 0.228 (61.5-fold), 0.224 (58.8-fold), 0.211 (57.0-fold) over the null model across European, African, and multi-ancestry participants respectively. The subsequent PRS-powered PheWAS identified a high level of shared biology between PCOS and a range of metabolic and endocrine outcomes, especially with obesity and diabetes: 'morbid obesity', 'type 2 diabetes', 'hypercholesterolemia', 'disorders of lipid metabolism', 'hypertension' and 'sleep apnea' reaching phenome-wide significance.

CONCLUSIONS: Our study has expanded the methodological utility of PRS in patient stratification and risk prediction, especially in a multifactorial condition like PCOS, across different genetic origins. By utilizing the individual genome-phenome data available from the EHR, our approach also demonstrates that polygenic prediction by PRS can provide valuable opportunities to discover the pleiotropic phenomic network associated with PCOS pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app