Comparison of Bayesian and frequentist group-sequential clinical trial designs

Nigel Stallard, Susan Todd, Elizabeth G Ryan, Simon Gates
BMC Medical Research Methodology 2020 January 7, 20 (1): 4

BACKGROUND: There is a growing interest in the use of Bayesian adaptive designs in late-phase clinical trials. This includes the use of stopping rules based on Bayesian analyses in which the frequentist type I error rate is controlled as in frequentist group-sequential designs.

METHODS: This paper presents a practical comparison of Bayesian and frequentist group-sequential tests. Focussing on the setting in which data can be summarised by normally distributed test statistics, we evaluate and compare boundary values and operating characteristics.

RESULTS: Although Bayesian and frequentist group-sequential approaches are based on fundamentally different paradigms, in a single arm trial or two-arm comparative trial with a prior distribution specified for the treatment difference, Bayesian and frequentist group-sequential tests can have identical stopping rules if particular critical values with which the posterior probability is compared or particular spending function values are chosen. If the Bayesian critical values at different looks are restricted to be equal, O'Brien and Fleming's design corresponds to a Bayesian design with an exceptionally informative negative prior, Pocock's design to a Bayesian design with a non-informative prior and frequentist designs with a linear alpha spending function are very similar to Bayesian designs with slightly informative priors.This contrasts with the setting of a comparative trial with independent prior distributions specified for treatment effects in different groups. In this case Bayesian and frequentist group-sequential tests cannot have the same stopping rule as the Bayesian stopping rule depends on the observed means in the two groups and not just on their difference. In this setting the Bayesian test can only be guaranteed to control the type I error for a specified range of values of the control group treatment effect.

CONCLUSIONS: Comparison of frequentist and Bayesian designs can encourage careful thought about design parameters and help to ensure appropriate design choices are made.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"