Development of an in vitro model of calcified cerebral emboli in acute ischemic stroke for mechanical thrombectomy evaluation

Sarah Johnson, Ray McCarthy, Brian Fahy, Oana Madalina Mereuta, Seán Fitzgerald, Julien Gaudirc, Jean-Paul Remadi, Eimad Shotar, Nader-Antoine Sourour, Karen Doyle, Michael Gilvarry, Patrick McGarry, Peter E McHugh, Frédéric Clarençon
Journal of Neurointerventional Surgery 2020 January 3
​ BACKGROUND: Calcified cerebral emboli (CCEs) are a rare cause of acute ischemic stroke (AIS) and are frequently associated with poor outcomes. The presence of dense calcified material enables reliable identification of CCEs using non-contrast CT. However, recanalization rates with the available mechanical thrombectomy (MT) devices remain low. OBJECTIVE: To recreate a large vessel occlusion involving a CCE using an in vitro silicone model of the intracranial vessels and to demonstrate the feasability of this model to test different endovascular strategies to recanalize an occlusion of the M1 segment of the middle cerebral artery (MCA). ​ METHODS: An in vitro model was developed to evaluate different endovascular treatment approaches using contemporary devices in the M1 segment of the MCA. The in vitro model consisted of a CCE analog placed in a silicone neurovascular model. Development of an appropriate CCE analog was based on characterization of human calcified tissues that represent likely sources of CCEs. Feasibility of the model was demonstrated in a small number of MT devices using four common procedural techniques. ​ RESULTS: CCE analogs were developed with similar mechanical behavior to that of ex vivo calcified material. The in vitro model was evaluated with various MT techniques and devices to show feasibility of the model. In this limited evaluation, the most successful retrieval approach was performed with a stent retriever combined with local aspiration through a distal access catheter, and importantly, with flow arrest and dual aspiration using a balloon guide catheter. ​ CONCLUSION: Characterization of calcified tissues, which are likely sources of CCEs, has shown that CCEs are considerably stiffer than thrombus. This highlights the need for a different in vitro AIS model for CCEs than those used for thromboemboli. Consequentially, an in vitro AIS model representative of a CCE occlusion in the M1 segment of the MCA has been developed.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"