Add like
Add dislike
Add to saved papers

Deformational changes after convection-enhanced delivery in the pediatric brainstem.

Neurosurgical Focus 2020 January 2
OBJECTIVE: In the brainstem, there are concerns regarding volumetric alterations following convection-enhanced delivery (CED). The relationship between distribution volume and infusion volume is predictably greater than one. Whether this translates into deformational changes and influences clinical management is unknown. As part of a trial using CED for diffuse intrinsic pontine glioma (DIPG), the authors measured treatment-related volumetric alterations in the brainstem and ventricles.

METHODS: Enrolled patients underwent a single infusion of radioimmunotherapy. Between 2012 and 2019, 23 patients with volumetric pre- and postoperative day 1 (POD1) and day 30 (POD30) MRI scans were analyzed using iPlan® Flow software for semiautomated volumetric measurements of the ventricles and pontine segment of the brainstem.

RESULTS: Children in the study had a mean age of 7.7 years (range 2-18 years). The mean infusion volume was 3.9 ± 1.7 ml (range 0.8-8.8 ml). Paired t-tests demonstrated a significant increase in pontine volume immediately following infusion (p < 0.0001), which trended back toward baseline by POD30 (p = 0.046; preoperative 27.6 ± 8.4 ml, POD1 30.2 ± 9.0 ml, POD30 29.5 ± 9.4 ml). Lateral ventricle volume increased (p = 0.02) and remained elevated on POD30 (p = 0.04; preoperative 23.5 ± 15.4 ml, POD1 26.3 ± 16.0, POD30 28.6 ± 21.2). Infusion volume had a weak, positive correlation with pontine and lateral ventricle volume change (r2 = 0.22 and 0.27, respectively). Four of the 23 patients had an increase in preoperative neurological deficits at POD30. No patients required shunt placement within 90 days.

CONCLUSIONS: CED infusion into the brainstem correlates with immediate but self-limited deformation changes in the pons. The persistence of increased ventricular volume and no need for CSF diversion post-CED are inconsistent with obstructive hydrocephalus. Defining the degree and time course of these deformational changes can assist in the interpretation of neuroimaging along the DIPG disease continuum when CED is incorporated into the treatment algorithm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app