Add like
Add dislike
Add to saved papers

Keratin 5-Cre-driven deletion of Ncstn in an acne inversa-like mouse model leads to a markedly increased IL-36a and Sprr2 expression.

Frontiers of Medicine 2019 December 29
Familial acne inversa (AI) is an autoinflammatory disorder that affects hair follicles and is caused by loss-of-function mutations in γ-secretase component genes. We and other researchers showed that nicastrin (NCSTN) is the most frequently mutated gene in familial AI. In this study, we generated a keratin 5-Cre-driven epidermis-specific Ncstn conditional knockout mutant in mice. We determined that this mutant recapitulated the major phenotypes of AI, including hyperkeratosis of hair follicles and inflammation. In Ncstnflox/flox ;K5-Cre mice, the IL-36a expression level markedly increased starting from postnatal day 0 (P0), and this increase occurred much earlier than those of TNF-α, IL-23A, IL-1β, and TLR4. RNA-Seq analysis indicated that Sprr2d, a member of the small proline-rich protein 2 family, in the skin tissues of the Ncstnflox/flox ;K5-Cre mice was also upregulated on P0. Quantitative reverse-transcription polymerase chain reaction showed that other Sprr2 genes had a similar expression pattern. Our findings suggested that IL-36a might be a key inflammatory cytokine in the pathophysiology of AI and involved in the malfunction of the skin barrier in the pathogenesis of AI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app