Add like
Add dislike
Add to saved papers

Aneurysm wall cellularity affects healing after coil embolization: assessment in a rat saccular aneurysm model.

BACKGROUND AND PURPOSE: Despite significant technical advances, recanalization rates after endovascular therapy of ruptured intracranial aneurysms (IAs) remain a clinical challenge. A histopathological hallmark of ruptured human IA walls is mural cell loss. Mural smooth muscle cells (SMCs) are known to promote intraluminal healing in thrombosed experimental aneurysms. In this rat model we assess the natural history and healing process after coil embolization in SMC-rich and decellularized aneurysms.

METHODS: Saccular aneurysms were created by end-to-side anastomosis of an arterial graft from the descending thoracic aorta of a syngeneic donor rat to the infrarenal abdominal aorta of recipient male Wistar rats. Untreated arterial grafts were immediately transplanted, whereas aneurysms with loss of mural cells were chemically decellularized before implantation. Aneurysms underwent coil implantation during aneurysm anastomosis. Animals were randomly assigned either to the non-decellularized or decellularized group and underwent macroscopic and histological analyses on days 3, 7, 21, or 90 post-coil implantation.

RESULTS: A total of 55 rats underwent macroscopic and histologic analysis. After coil embolization, aneurysms with SMC-rich walls showed a linear course of thrombosis and neointima formation whereas decellularized aneurysms showed marked inflammatory wall degeneration with increased recanalization rates 21 days (p=0.002) and 90 days (p=0.037) later. The SMCs showed the ability to actively migrate into the intra-aneurysmal thrombus and participate in thrombus organization.

CONCLUSIONS: Coil embolization of aneurysms with highly degenerated walls is prone to further wall degeneration, increased inflammation, and recanalization compared with aneurysms with vital SMC-rich walls.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app