Add like
Add dislike
Add to saved papers

Epigenetics and prostate cancer: defining the timing of DNA methyltransferase deregulation during prostate cancer progression.

Pathology 2020 Februrary
DNA methyltransferases (DNMTs) regulate gene expression by methylating cytosine residues within CpG dinucleotides. Aberrant methylation patterns have been shown in a variety of human tumours including prostate cancer. However, the expression of DNMTs in clinical samples across the spectrum of prostate cancer progression has not been studied before. Tissue microarrays were constructed from the prostatectomy specimens of 309 patients across the spectrum of prostate cancer progression: hormone-naïve low-grade prostate cancer (n=49), hormone-naïve high-grade prostate cancer (n=151), hormonally treated high-grade prostate cancer (n=65), and castrate-resistant prostate cancer (CRPC) including neuroendocrine carcinoma (n=44). Adjacent non-neoplastic parenchyma was also available in 100 patients. In 71 patients with high-grade carcinoma and lymph node metastasis, tissue from the metastasis was also available for analysis. Immunohistochemical staining was performed with antibodies against DNMT1, DNMT2, DNMT3A, DNMT3B, and DNMT3L. Our results showed that DNMT1 and DNMT3L were upregulated early in prostate cancer progression, whereas DNMT2 was upregulated as a response to androgen ablation. DNMT1, DNMT3A, and DNMT3B were higher in the late stages of prostate cancer progression, i.e., the emergence of castrate resistance and androgen-independent growth. Lastly, DNMT1, DNMT2, and DNMT3L were upregulated in lymph node metastases compared to primary carcinomas. Our results highlight a cascade of epigenetic events in prostate cancer progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app