Add like
Add dislike
Add to saved papers

Machine learning for the detection of early immunological markers as predictors of multi-organ dysfunction.

Scientific Data 2019 December 20
The immune response to major trauma has been analysed mainly within post-hospital admission settings where the inflammatory response is already underway and the early drivers of clinical outcome cannot be readily determined. Thus, there is a need to better understand the immediate immune response to injury and how this might influence important patient outcomes such as multi-organ dysfunction syndrome (MODS). In this study, we have assessed the immune response to trauma in 61 patients at three different post-injury time points (ultra-early (<=1 h), 4-12 h, 48-72 h) and analysed relationships with the development of MODS. We developed a pipeline using Absolute Shrinkage and Selection Operator and Elastic Net feature selection methods that were able to identify 3 physiological features (decrease in neutrophil CD62L and CD63 expression and monocyte CD63 expression and frequency) as possible biomarkers for MODS development. After univariate and multivariate analysis for each feature alongside a stability analysis, the addition of these 3 markers to standard clinical trauma injury severity scores yields a Generalized Liner Model (GLM) with an average Area Under the Curve value of 0.92 ± 0.06. This performance provides an 8% improvement over the Probability of Survival (PS14) outcome measure and a 13% improvement over the New Injury Severity Score (NISS) for identifying patients at risk of MODS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app