JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

ARRB1 inhibits non-alcoholic steatohepatitis progression by promoting GDF15 maturation.

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is associated with the dysregulation of lipid metabolism and hepatic inflammation. The causal mechanism underlying NASH is not fully elucidated. This study investigated the role of β-Arrestin1 (ARRB1) in the progression of NASH.

METHODS: Liver tissue from patients with NASH and controls were obtained to evaluate ARRB1 expression. NASH models were established in Arrb1-knockout and wild-type mice fed either a high-fat diet (HFD) for 26 weeks or a methionine/choline-deficient (MCD) diet for 6 weeks.

RESULTS: ARRB1 expression was reduced in liver samples from patients with NASH. Reduced Arrb1 levels were also detected in murine NASH models. Arrb1 deficiency accelerated steatohepatitis development in HFD-/MCD-fed mice (accompanied by the upregulation of lipogenic genes and downregulation of β-oxidative genes). Intriguingly, ARRB1 was found to interact with growth differentiation factor 15 (GDF15) and facilitated the transportation of GDF15 precursor (pro-GDF15) to the Golgi apparatus for cleavage and maturation. Treatment with recombinant GDF15 ablated the lipid accumulation in the presence of Arrb1 deletion both in vitro and in vivo. Re-expression of Arrb1 in the NASH models ameliorated the liver disease, and this effect was greater in the presence of pro-GDF15 overexpression. By contrast, the effect of pro-GDF15 overexpression alone was impaired in Arrb1-deficient mice. In addition, the severity of liver disease in patients with NASH was negatively correlated with ARRB1 expression.

CONCLUSION: ARRB1 acts as a vital regulator in the development of NASH by facilitating the translocation of GDF15 to the Golgi apparatus and its subsequent maturation. Thus, ARRB1 is a potential therapeutic target for the treatment of NASH.

LAY SUMMARY: Non-alcoholic steatohepatitis (NASH) is associated with the progressive dysfunction of lipid metabolism and a consequent inflammatory response. Decreased ARRB1 is observed in patients with NASH and murine NASH models. Re-expression of Arrb1 in the murine NASH model ameliorated liver disease, an effect which was more pronounced in the presence of pro-GDF15 overexpression, highlighting a promising strategy for NASH therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app