Add like
Add dislike
Add to saved papers

Seasonal changes in yolk hormone concentrations carry-over to offspring traits.

Yolk hormones are substances which transmit non-genetic factors from the mother to the next generation. The systematic changes of yolk hormone concentrations within asynchronously hatching clutches have been interpreted as a means to adaptively shape the offspring's phenotype. However, in synchronously hatching clutches the role of yolk hormones is less understood. We investigated whether seasonal changes between eggs in the yolk hormones testosterone (Testo), progesterone (Prog) and corticosterone (Cort) also occur in the grey partridge, a synchronously hatching precocial species without direct food competition between siblings. Specifically we asked whether yolk hormone concentrations systematically vary with season and whether they affect the offspring's hatching mass, mass gain, circulating baseline and stress-induced Cort. Additionally, we investigated the effect of genetic background and food availability on yolk hormone concentrations by subjecting grey partridge hens of two strains (wild and domesticated) to two different feeding regimes (predictable vs. unpredictable feeding) during egg laying. We hypothesized that egg hormone concentrations change over the season, but breeding in captivity over many generations and ad libitum food access could have resulted in domestication effects which abolished potential seasonal effects. Results showed that progressing season had a strong positive effect on yolk Prog and yolk Testo, but not on yolk Cort. Feeding regimes and strain had no effect on yolk hormones. Offspring mass and mass gain increased and baseline Cort decreased with progressing season. In addition, yolk Testo correlated positively with offspring mass gain and negatively with baseline Cort, while yolk Prog had a positive correlation with baseline Cort. Strain and feeding regimes of the mother had no effect on offspring traits. In conclusion, grey partridge chicks hatching late in the season might benefit from the increased concentrations of the growth-stimulating yolk Testo and by this catch-up in development. Hence, yolk hormone concentration could adaptively shape the offspring phenotype in a precocial species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app