Add like
Add dislike
Add to saved papers

miR-203a-3p.1 is involved in the regulation of osteogenic differentiation by directly targeting Smad9 in MM-MSCs.

Oncology Letters 2019 December
MicroRNAs (miRNAs) have emerged as important regulators of bone development and regeneration. The aim of the present study was to determine whether miR-203a-3p.1 is involved in osteogenic differentiation of multiple myeloma (MM)-mesenchymal stem cells (MSCs) and the potential underlying mechanism. MSCs were isolated from patients with MM and normal subjects and confirmed by flow cytometry using specific surface markers. The osteogenic differentiation capacity of MM-MSCs was identified by Alizarin Red S calcium deposition staining and reverse transcription-quantitative PCR (RT-qPCR) of typical osteoblast differentiation markers. The role of miR-203a-3p.1 in the osteoblast differentiation of MM-MSCs was determined by gain or loss of function experiments. The target of miR-203a-3p.1 was identified using bioinformatics (including the miRNA target prediction database TargetScan, miRDB, DIANA TOOLS and venny 2.1.0), luciferase reporter assay, RT-qPCR and western blotting. The expression levels of proteins involved in the Wnt3a/β-catenin signaling pathway were detected by western blot analysis. The results revealed that the osteogenic differentiation capacity of MM-MSCs was reduced when compared with normal (N)-MSCs, as demonstrated by a decrease in calcium deposition and mRNA expression of typical osteoblast differentiation markers, including ALP, OPN and OC. In addition, miR-203a-3p.1 was downregulated in N-MSCs following osteoblast induction, whereas no changes were observed in MM-MSCs. The downregulation of miR-203a-3p.1 resulted in increased osteogenic potential, as indicated by the increase in the mRNA expression levels of the typical osteoblast differentiation markers, including alkaline phosphatase (ALP), osteopontin (OPN) and osteocalcin (OC). Bioinformatics and luciferase reporter assay analysis indicated that mothers against decapentaplegic homolog 9 (Smad9) may be a direct target of miR-203a-3p.1 in N-MSCs. The RT-qPCR and western blot assays revealed that overexpression of smad9 significantly enhanced the effect of miR-203a-3p.1 inhibitors on osteoblast markers, which indicated that miR-203a-3p.1 inhibitors may regulate the osteogenic differentiation of MM-MSCs by upregulating Smad9. In addition, the Wnt3a/β-catenin signaling pathway was activated following miR-203a-3p.1 inhibition. These results suggest that miR-203a-3p.1 may serve an important role in the osteogenic differentiation of MM-MSCs by regulating Smad9 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app