Add like
Add dislike
Add to saved papers

Pharmacological MRI to investigate the functional selectivity of 5-HT 1A receptor biased agonists.

Neuropharmacology 2019 November 27
The emerging concept of "biased agonism" denotes the phenomenon whereby agonists can preferentially direct receptor signalling to specific intracellular responses among the different transduction pathways, thus potentially avoiding side effects and improving therapeutic effects. The aim of this study was to investigate biased agonism by using pharmacological magnetic resonance imaging (phMRI). The cerebral blood oxygen level dependent (BOLD) signal changes induced by increasing doses of two serotonin 5-HT1A receptor biased agonists, NLX-112 and NLX-101, were mapped in anaesthetized rats. Although both compounds display high affinity, selectivity and agonist efficacy for 5-HT1A receptors, NLX-101 is known to preferentially activate post-synaptic receptors, whereas NLX-112 targets both pre- and post-synaptic receptors. We used several doses of agonists in order to determine if the regional selectivity of NLX-101 was dose-dependent. NLX-112 and NLX-101 induced different positive and negative hemodynamic changes patterns at equal doses. Importantly, NLX-101 had no significant effect in regions expressing pre-synaptic receptors contrary to NLX-112. NLX-112 also produced higher BOLD changes than NLX-101 in the orbital cortex, the somatosensory cortex, and the magnocellular preoptic nuclei. In other regions such as the retrosplenial cortex and the dorsal thalamus, the drugs had similar effects. In terms of functional connectivity, NLX-112 induced more widespread changes than NLX-101. The present phMRI study demonstrates that two closely-related agonists display notable differences in their hemodynamic "fingerprints". These data support the concept of biased agonism at 5-HT1A receptors and raise the prospect of identifying novel therapeutics which exhibit improved targeting of brain regions implicated in neuropsychiatric disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app