Add like
Add dislike
Add to saved papers

Mitophagy in the Hippocampus Is Excessive Activated After Cardiac Arrest and Cardiopulmonary Resuscitation.

Neurochemical Research 2019 November 27
This study examined the activation of mitophagy following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) and the relationship between the change with time and apoptosis.

MAIN METHODS: The male Sprague-Dawley rats were randomized into four groups: Sham group, CPR24h group, CPR48h group, CPR72h group. The rat model of cardiac arrest was established by asphyxiation. We employed western blot to analyze the levels of mitophagy related proteins of hippocampus, JC-1 to detect mitochondrial membrane potential (MMP) and flow cytometry to measure the rate of apoptosis of hippocampal neurons. Moreover, we also intuitively observed the occurrence of mitophagy through electron microscopy.

KEY FINDINGS: The results showed that the levels of TOMM20 and Tim23 protein were significantly decreased after CPR, which were more remarkable following 72 h of CPR. However, the protein levels of dynamin related protein 1 (Drp1) and cytochrome C (Cyt-c) were strongly up-regulated after CPR. Meanwhile, the hippocampal MMP decreased gradually with time after CPR. Furthermore, we more intuitively verified the activation of mitophagy through electron microscopy. In addition, the rats of apoptosis rate of hippocampus after CPR were significantly increased, which were gradually enhanced over time from 24 h until at least 72 h following CPR.

SIGNIFICANCE: with the enhancement of mitophagy, the apoptosis of hippocampal neurons was gradually enhanced, which suggested mitophagy may be excessive activated and aggravating brain damage after CA and CPR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app