Add like
Add dislike
Add to saved papers

Comparative Cr, As and CCA induced Cytostaticity in mice kidney: A contribution to assess CCA toxicity.

CCA (Chromium Copper Arsenate) treated wood, widely used in outdoor residential structures and playgrounds, poses considerable dangers of leaching of its components to the environment. In this study, mouse kidney samples were used to evaluate the effects of CCA, chromium trioxide (CrO3 ) and arsenic pentoxide (As2 O5 ) on cell pathophysiology by flow cytometry. Samples were collected after 14, 24, 48 and 96 h of animal exposure. While Cr had no statistically significant cytostatic effects, As2 O5 induced a S-phase delay in animals exposed for 24 h, and over time a G0/G1 phase blockage. The effects of CCA in S-phase were similar, but more severe than those of As2 O5 . Since environmental and public health hazards due to the long durability of CCA-treated wood products, these data confirm that CCA has profoundly toxic effects on cell cycle, distinct from the compounds themselves. These cytostatic effects support cell cycle dynamics as a valuable endpoint to assess the toxicity of remaining CCA-treated infrastructures, and the expected increased waste stream over the coming decades.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app