COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparative expression analysis of phospholipid binding protein annexina1 in nephrogenesis and kidney cancer.

Background The expression in the glomerular mesangial cells, papillary, and collecting duct cells demonstrated annexin A1 (AnxA1)'s role in specific renal functions. With varying concentrations of calcium (Ca2+), it is considered to regulate cellular processes such as cell proliferation, apoptosis, and clearance of apoptotic cells by forming ceramides, a key lipid mediator of apoptosis. It also participates in tumorigenesis based on its location. On account of these features, we investigated the expression of this apoptosis-associated protein in fetal kidneys at different gestational periods, mature kidneys and in kidney cancer tissues in order to localize and possibly characterize its role during nephrogenesis and renal tumors. Methods AnxA1 expression was evaluated by an immunohistochemistry technique in "paraffin-embedded" renal tissue sections from autopsied fetuses at different gestational ages, in mature kidneys and renal cancer tissues. Results The current study data demonstrated that AnxA1 is expressed in the mesangial cells and podocytes of maturing glomeruli in the developing renal cortex of fetal kidneys at 14 to 19 weeks of gestation. The expression in the mesangial cells declined in later weeks of gestation and persisted into adulthood. AnxA1 expression increased with the progression of clear cell renal cell carcinoma (CCRCC) and also in other cancer types indicating a potential role of the protein in tumorigenesis. Conclusions We presume that AnxA1 in the podocytes and mesangial cells play important roles in various signaling pathways in the functioning of the glomerulus. These results and concepts provide a framework to further dissect its biological properties and thereby develop diagnostic, prognostic, and therapeutic strategies targeting the molecule in various renal pathologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app