Add like
Add dislike
Add to saved papers

Relationship between serum iohexol clearance, serum SDMA concentration, and serum creatinine concentration in non-azotemic dogs.

BACKGROUND: Serum creatinine and symmetric dimethylarginine (SDMA) are used as surrogate markers of glomerular filtration rate (GFR) in clinical practice. Data pertaining to the correlations between GFR, SDMA, and serum creatinine in client-owned dogs are limited.

OBJECTIVES: To describe the relationship between GFR, SDMA, and serum creatinine in a population of client-owned dogs, and to compare clinical utility of SDMA to GFR estimation for detecting pre-azotemic chronic kidney disease.

ANIMALS: Medical records of 119 dogs that had GFR estimation performed via serum iohexol clearance between 2012 and 2017.

METHODS: Prospective study using archived samples. GFR, SDMA, and serum creatinine results were reviewed and submitting practices contacted for outcome data. All dogs included in the study population were non-azotemic. Correlations between GFR, SDMA, and serum creatinine were determined by regression analysis. Sensitivity, specificity, and positive and negative likelihood ratios of different cutoffs for SDMA and serum creatinine for detecting decreased GFR were calculated, using a 95% confidence interval.

RESULTS: Serum creatinine and SDMA were moderately correlated with GFR (R2 = 0.52 and 0.27, respectively, P < .0001) and with each other (R2 = 0.33, P < .0001). SDMA >14 μg/dL was sensitive (90%) but nonspecific (50%) for detecting a ≥40% decrease in GFR. Optimal SDMA concentration cutoff for detecting a ≥40% GFR decrease was >18 μg/dL (sensitivity 90%, specificity 83%).

CONCLUSIONS AND CLINICAL IMPORTANCE: In non-azotemic dogs being screened for decreased renal function, using a cutoff of >18 μg/dL rather than >14 μg/dL increases the specificity of SDMA, without compromising sensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app