Add like
Add dislike
Add to saved papers

Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer's disease.

The amyloid hypothesis of Alzheimer's disease (AD) has become outdated as researchers and clinicians recognize that lifestyle factors and environmental stressors have a greater impact on the etiology of AD than genetic predispositions. When persistent over decades, chronic psychological and physical stressors disrupt the body's natural adaptions to stress (allostasis) resulting in a general "wear and tear" on the body termed allostatic overload. Allostatic overload results in hypercortisolemia, disrupted hypothalamic-pituitary-adrenal (HPA) axis regulation, elevated proinflammatory cytokines and chemokines, reduced synaptic plasticity, persistently activated microglia, and importantly, a dysbiotic gut microbiota. This plethora of physiological maladaptations precedes the canonical symptoms of AD, including amyloid-beta plaque accumulation and tau hyperphosphorylation, indicating that a successful therapeutic approach to AD must first alleviate these risk factors. In this chapter, the use of gut microbiota modifying synbiotics, a combination of probiotics and prebiotics, to simultaneously and sustainably alleviate stress-induced AD risk factors is proposed. Synbiotic-derived bioactive metabolites can increase the integrity of the gut epithelial barrier preventing the infiltration of bacterial peptides and other immune-activating substances. These metabolites can also alter the balance of peripheral immune cells toward an anti-inflammatory state, protecting the body against stress-induced inflammatory challenges. These peripheral adaptations ultimately promote cognitive resilience to stress-induced AD by preventing microglia inflammasome activation, reinstating HPA axis negative feedback loops and allowing healthy neurogenic and neuroplasticity processes to ensue. Overall, synbiotics provide a novel treatment paradigm for AD that promote a sustainable allostasis to chronic stress, protecting the brain from the neuropathologies driving AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app