Add like
Add dislike
Add to saved papers

Blood biomarkers with Parkinson's disease clusters and prognosis: The oxford discovery cohort.

BACKGROUND: Predicting prognosis in Parkinson's disease (PD) has important implications for individual prognostication and clinical trials design and targeting novel treatments. Blood biomarkers could help in this endeavor.

METHODS: We identified 4 blood biomarkers that might predict prognosis: apolipoprotein A1, C-reactive protein, uric acid and vitamin D. These biomarkers were measured in baseline serum from 624 Parkinson's disease subjects (median disease duration, 1.0 years; interquartile range, 0.5-2.0) from the Oxford Discovery prospective cohort. We compared these biomarkers against PD subtypes derived from clinical features in the baseline cohort using data-driven approaches. We used multilevel models with MDS-UPDRS parts I, II, and III and Montreal Cognitive Assessment as outcomes to test whether the biomarkers predicted subsequent progression in motor and nonmotor domains. We compared the biomarkers against age of PD onset and age at diagnosis. The q value, a false-discovery rate alternative to P values, was calculated as an adjustment for multiple comparisons.

RESULTS: Apolipoprotein A1 and C-reactive protein levels differed across our PD subtypes, with severe motor disease phenotype, poor psychological well-being, and poor sleep subtype having reduced apolipoprotein A1 and higher C-reactive protein levels. Reduced apolipoprotein A1, higher C-reactive protein, and reduced vitamin D were associated with worse baseline activities of daily living (MDS-UPDRS II).

CONCLUSION: Baseline clinical subtyping identified a pro-inflammatory biomarker profile significantly associated with a severe motor/nonmotor disease phenotype, lending biological validity to subtyping approaches. No blood biomarker predicted motor or nonmotor prognosis. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app