Add like
Add dislike
Add to saved papers

rM-CSF efficiently replaces L929 in generating mouse and rat bone marrow-derived macrophages for in vitro functional studies of immunity to intracellular bacteria.

Methods used to prepare bone marrow-derived macrophages (BMDMs) may influence the outcomes of immunological assays in which they are used. Supernatant conditioned by growth of L929 cells has often been used to generate mouse macrophages from bone marrow in vitro but is subject to lot-to-lot variability. To reduce experimental variability and to standardize techniques across laboratories, we investigated recombinant M-CSF (rM-CSF) as an alternative supplement for BMDM maturation in the context of macrophage infection, using the intracellular bacterium Live Vaccine Strain (LVS) of Francisella tularensis as a prototype. We compared rM-CSF with L929 supernatant in terms of their effects on mouse and rat macrophage growth, maturation patterns, surface marker expression, and the expression of selected genes. Further, we compared macrophage infectivity and bacterial replication using LVS. Finally, we compared the in vitro function of BMDMs co-cultured with splenocytes from vaccinated animals in terms of their control of intramacrophage bacterial replication, as well as production of cytokines and nitric oxide. We demonstrated that rM-CSF produced BMDMs with similar, or minimal, phenotypic and gene expression outcomes compared to those generated with media containing L929 supernatant. Most importantly, functional outcomes were similar. Taken together, our data support the use of the rM-CSF in cell culture media as an alternative to L929-supplemented media for functional bioassays that use C57BL/6J mouse or Fischer 344 rat BMDMs to study intracellular infections. This comparison therefore facilitates future protocol standardization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app