Add like
Add dislike
Add to saved papers

The Role of Transposable Elements in Pongamia Unigenes and Protein Diversity.

Molecular Biotechnology 2019 October 32
Pongamia pinnata (also called Millettia pinnata), a non-edible oil yielding tree, is well known for its multipurpose benefits and acts as a potential source for medicine and biodiesel preparation. Due to increase in demand for cultivation, understanding of genetic diversity is an important parameter for further breeding and cultivation programme. Transposable elements (TEs) are a major component of plant genome but still, their evolutionary significance in Pongamia remains unexplored. In view to understand the role of TEs in genome diversity, Pongamia unigenes were screened for the presence of TE cassettes. Our analysis showed the presence of all categories of TE cassettes in unigenes with major contribution of long terminal repeat-retrotransposons towards unigene diversity. Interestingly, the insertion of some TEs was also observed in both organellar genomes. The study of insertion of TEs in coding sequence is of great interest as they may be responsible for protein diversity thereby influencing the phenotype. The present investigation confirms the exaptation phenomenon in pyruvate decarboxylase (PDC) gene where the entire exon sequence was derived from Ty3-gypsy like retrotransposon. The study of PDC protein revealed the translation of gypsy element into protein. Furthermore, the phylogenetic study confirmed the diversity in PDC gene due to insertion of the gypsy element, where the PDC genes with and without gypsy insertion were clustered separately.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app