JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mixed-phenotype acute leukemia: A cohort and consensus research strategy from the Children's Oncology Group Acute Leukemia of Ambiguous Lineage Task Force.

Cancer 2020 Februrary 2
BACKGROUND: Optimal chemotherapy for treating mixed-phenotype acute leukemia (MPAL) and the role of hematopoietic stem cell transplantation (HSCT) remain uncertain. Major limitations in interpreting available data are MPAL's rarity and the use of definitions other than the currently widely accepted criteria: the World Health Organization 2016 (WHO2016) classification.

METHODS: To assess the relative efficacy of chemotherapy types for treating pediatric MPAL, the Children's Oncology Group (COG) Acute Leukemia of Ambiguous Lineage Task Force assembled a retrospective cohort of centrally reviewed WHO2016 MPAL cases selected from banking studies for acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Patients were not treated in COG trials; treatment and outcome data were captured separately. The findings were then integrated with the available, mixed literature to develop a prospective trial in pediatric MPAL.

RESULTS: The central review confirmed that 54 of 70 cases fulfilled WHO2016 criteria for MPAL. ALL induction regimens achieved remission in 72% of the cases (28 of 39), whereas AML regimens achieved remission in 69% (9 of 13). The 5-year event-free survival (EFS) and overall survival (OS) rates for the entire cohort were 72% ± 8% and 77% ± 7%, respectively. EFS and OS were 75% ± 13% and 84% ± 11%, respectively, for those receiving ALL chemotherapy alone without HSCT (n = 21).

CONCLUSIONS: The results of the COG MPAL cohort and a literature review suggest that ALL chemotherapy without HSCT may be the preferred initial therapy. A prospective trial within the COG is proposed to investigate this approach; AML chemotherapy and/or HSCT will be reserved for those with treatment failure as assessed by minimal residual disease. Embedded biology studies will provide further insight into MPAL genomics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app