Add like
Add dislike
Add to saved papers

High-intensity interval training with long duration intervals is more effective than short duration intervals for improving glycolytic capacity in the rats' gastrocnemius muscle.

Background There is little data regarding the ability of high-intensity interval training (HIIT) to increase of glycolytic capacity and intramuscular metabolic adaptations. The goal of this study was to evaluate the effects of HIIT (8 weeks, 5 times/week) with short (HIIT1 min: 16 × 1 min work and active recovery at 80-95% and 50-60% VO2max, respectively) and long (HIIT4 min: 4 × 4 min work and active recovery at 80-95% and 50-60% VO2max, respectively) duration intervals and 4 weeks detraining on the levels of phosphofructokinase (PFK), glycogen synthase 1 (GYS1), monocarboxylate transporter 4 (MCT4) and lactate dehydrogenase (LDH) activity in the rats' gastrocnemius muscle. Materials and methods Fifty-four male Wistar rats were assigned into three groups, including HIIT1 min, HIIT4 min and control (Ctrl). After 48 h of the last training session and after 4 weeks of detraining, the rats were sacrificed, and the gastrocnemius muscles were isolated. Results The PFK levels in the HIIT4 min group was significantly higher than in the HIIT1 min and Ctrl groups, and after the detraining period in the HIIT4 minDT group significantly decreased compared to the HIIT4 min group. The LDH activity in the HIIT4 min and HIIT1 min groups were significantly higher than the Ctrl group and the increasing trend in the HIIT4 min group was more than the HIIT1 min group. There was no significant change in LDH activity after detraining compared to training. No significant changes were observed in the level of GYS1 and MCT4 after HIIT. Conclusions Eight weeks of HIIT with long duration intervals induced more improvements in intramuscular glycolytic capacity than a short duration. After short-term detraining, some of these adaptations have remained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app