Add like
Add dislike
Add to saved papers

Effects of Nutritional Deprivation and Re-Alimentation on the Feed Efficiency, Blood Biochemistry, and Rumen Microflora in Yaks ( Bos grunniens ).

Yak suffers severe starvation and body weight reduction in the cold season and recovers relatively rapid growth in the warm season every year. Herein, we investigated the effects of starvation and refeeding on the growth, feed efficiency, blood biochemistry and rumen microbial community as well as functions of yaks. The results showed that starvation significantly reduced the body weight of yaks. Serum glucose and triglyceride concentrations significantly decreased, and β-hydroxybutyric acid and non-esterified fatty acid levels were significantly increased during the starvation period. Starvation also dramatically inhibited rumen microbial fermentations. Whereas, refeeding with the same diet significantly increased the feed efficiency, nutrient digestibility together with rumen acetate, propionate and microbial protein productions compared with those before starvation. The 16S rDNA sequencing results showed that starvation mainly decreased the ruminal protein-degrading bacteria Prevotella and propionate-producing bacteria Succiniclasticum populations and dramatically increased the denitrifying bacteria Thauera populations. Refeeding reduced the Euryarchaeota population and increased propionate-producing bacteria Succinivibrionaceae UCG-002 and starch-degrading bacteria Ruminobacter populations when compared with those before starvation. The predicted microbial metabolic pathways, related to amino acid and starch metabolisms, were also significantly altered during the starvation and refeeding. The results indicated that the rumen microorganisms and their metabolism pathways changed with feed supply, and these alterations in part contributed to yak adaption to starvation and re-alimentation. This study is helpful for enhancing the understanding and utilization of this natural character of yaks to explore and improve their growth potential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app