JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

CR-Unet: A Composite Network for Ovary and Follicle Segmentation in Ultrasound Images.

Transvaginal ultrasound (TVUS) is widely used in infertility treatment. The size and shape of the ovary and follicles must be measured manually for assessing their physiological status by sonographers. However, this process is extremely time-consuming and operator-dependent. In this study, we propose a novel composite network, namely CR-Unet, to simultaneously segment the ovary and follicles in TVUS. The CR-Unet incorporates the spatial recurrent neural network (RNN) into a plain U-Net. It can effectively learn multi-scale and long-range spatial contexts to combat the challenges of this task, such as the poor image quality, low contrast, boundary ambiguity, and complex anatomy shapes. We further adopt deep supervision strategy to make model training more effective and efficient. In addition, self-supervision is employed to iteratively refine the segmentation results. Experiments on 3204 TVUS images from 219 patients demonstrate the proposed method achieved the best segmentation performance compared to other state-of-the-art methods for both the ovary and follicles, with a Dice Similarity Coefficient (DSC) of 0.912 and 0.858, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app