Add like
Add dislike
Add to saved papers

Towards breast cancer targeting: Synthesis of tetrahydroindolocarbazoles, antibreast cancer evaluation, uPA inhibition, molecular genetic and molecular modelling studies.

Bioorganic Chemistry 2019 October 2
A series of some new tetrahydroindolocarbazole derivatives has been synthesized. The structure of the synthesized compounds has been confirmed by different spectroscopic techniques such as IR, NMR, elemental analysis and mass spectrometry. The target compounds were evaluated for their antitumor activity against breast cancer cell line MCF-7, their GI% and their LC50 have been determined. Six of the synthesized compounds exhibited GI% values against MCF-7 cell lines exceeding 70% ranging from 71.9 to 85.0% in addition that compound 11 expressed GI% values of 99.9% and considered the most active derivatives among the synthesized ones. Compound 11 showed a remarkable decrease of u PA level to 3.5 ng/ml compared to DOX. Compound 5, 11 and 15 showed significant decrease in expression of MTAP and CDKN2A, in addition to a remarkable decrease in DNA damage comet assay method. Molecular modeling studies were performed to interpretate the behavior of active ligands as uPA inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app