Add like
Add dislike
Add to saved papers

Usefulness of recurrence plots from airflow recordings to aid in paediatric sleep apnoea diagnosis.

BACKGROUND AND OBJECTIVE: In-laboratory overnight polysomnography (PSG) is the gold standard method to diagnose the Sleep Apnoea-Hypopnoea Syndrome (SAHS). PSG is a complex, expensive, labour-intensive and time-consuming test. Consequently, simplified diagnostic methods are desirable. We propose the analysis of the airflow (AF) signal by means of recurrence plots (RP) features. The main goal of our study was to evaluate the utility of the information from RPs of the AF signals to detect paediatric SAHS at different levels of severity. In addition, we also evaluated the complementarity with the 3% oxygen desaturation index (ODI3 ).

METHODS: 946 AF and blood oxygen saturation (SpO2 ) recordings from children ages 0-13 years were used. The population under study was randomly split into training (60%) and test (40%) sets. RP was computed and 9 RP features were extracted from each AF recording. ODI3 was also calculated from each SpO2 recording. A feature selection stage was conducted in the training group by means of the fast correlation-based filter (FCBF) methodology to obtain a relevant and non-redundant optimum feature subset. A multi-layer perceptron neural network with Bayesian approach (BY-MLP), trained with these optimum features, was used to estimate the apnoea-hypopnoea index (AHI).

RESULTS: 8 of the RP features showed statistically significant differences (p-value <0.01) among the SAHS severity groups. FCBF selected the maximum length of the diagonal lines from RP, as well as the ODI3 . Using these optimum features, the BY-MLP model achieved 83.2%, 78.5%, and 91.0% accuracy in the test group for the AHI thresholds 1, 5, and 10 events/h, respectively. Moreover, this model reached a negative likelihood ratio of 0.1 for 1 event/h and a positive likelihood ratio of 13.7 for 10 events/h.

CONCLUSIONS: RP analysis enables extraction of useful SAHS-related information from overnight AF paediatric recordings. Moreover, it provides complementary information to the widely-used clinical variable ODI3 . Thus, RP applied to AF signals can be used along with ODI3 to help in paediatric SAHS diagnosis, particularly to either confirm the absence of SAHS or the presence of severe SAHS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app