Add like
Add dislike
Add to saved papers

Apelin-36 Mediates Neuroprotective Effects by Regulating oxidative stress, autophagy and apoptosis in MPTP-induced Parkinson's Disease model mice.

Brain Research 2019 October 4
Parkinson's disease (PD), a common human neurodegenerative disorder, is characterized by the presence of intraneuronal Lewy bodies composed principally of abnormal aggregated and post-translationally modified α-synuclein. In our previous research, we have demonstrated the neuroprotective effect of Apelin-36, a neuroendocrine peptide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin(MPTP)-lesioned PD model mice. Therefore, this study was designed to evaluate the neuroprotective mechanism of Apelin-36 against MPTP-induced neurotoxicity in mice. The results showed that MPTP-induced the depletion of dopamine in the striatum(STR) was partially reversed by Apelin-36. Apelin-36 also improved the activity of antioxidant system including superoxide dismutase (SOD) and glutathione (GSH), and decreased the overproduction of malondialdehyde (MDA) in the substantia nigra pars compacta (SNpc) and STR of MPTP-treated mice. Moreover, Apelin-36 downregulated inducible nitric oxide synthase (iNOS) and nitrated α-synuclein expression. Furthermore, Apelin-36 significantly promoted autophagy indicated by the up-regulation of LC3-II and Beclin1 and inhibition of p62 expression in the SNpc and STR of MPTP-treated mice. The protective effect of Apelin-36 was also associated with the inhibition of the apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase(JNK) signaling pathway and inactivation of caspase-3. Taken together, our findings demonstrated that the neuroprotective mechanism of Apelin-36 against MPTP-induced neurotoxicity in mice might be related to decreasing the aggregation of nitrated α-synuclein and alleviating oxidative stress as well as promoting autophagy and inhibiting ASK1/JNK/caspase-3 apoptotic pathway, which provides a novel strategy for PD treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app