JOURNAL ARTICLE

From Receptor Selectivity to Functional Selectivity: The Rise of Biased Agonism in 5-HT1A Receptor Drug Discovery

Joanna Sniecikowska, Adrian Newman-Tancredi, Marcin Kolaczkowski
Current Topics in Medicinal Chemistry 2019 September 11
31544717
Despite extensive efforts to design serotonin 5-HT1A receptor compounds, there are currently no clinically available selective agonists to explore the therapeutic potential of activating this receptor. Commonly used drugs targeting 5-HT1A receptor, such as buspirone or other azapirone compounds, possess only limited selectivity over cross-reacting sites, act as partial agonists for 5-HT1A receptor activation, and are metabolically labile, generating active metabolites. In addition, drug discovery has been hampered by the multiplicity of 5-HT1A receptor subpopulations, expressed in different brain regions, that are coupled to distinct molecular signaling mechanisms and mediate a wide variety of physiological responses, both desired and undesired. In this context, advances in 5-HT1A receptor drug discovery have attracted attention to novel 'biased agonists' that are selective, efficacious and preferentially target the brain regions that mediate therapeutic activity without triggering side effects. The prototypical first-in-class compound NLX-101 (a.k.a. F15599; 3-chloro-4-fluorophenyl-[4-fluoro-4-[[(5-methylpyrimidin-2-ylmethyl)amino]methyl]piperidin-1-yl]methanone), preferentially activates 5-HT1A receptors in cortical regions and exhibits potent, rapid-acting and sustained antidepressant-like and procognitive properties in animal models. Here we review the background that led to the discovery the class of 1-(1-benzoylpiperidin-4-yl)methanamine derivatives, including NLX-101, as well as recent advances in discovery of novel 5-HT1A receptor biased agonists, notably aryloxyethyl derivatives of 1‑(1-benzoylpiperidin-4yl)methanamine which show promising pharmacological activity both in vitro and in vivo. Overall, the results suggest that opportunities exist for innovative drug discovery of selective 5-HT1A receptor biased agonists that may open new avenues for the treatment of CNS disorders involving dysfunction of serotonergic neurotransmission.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
31544717
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"