Add like
Add dislike
Add to saved papers

Functional hierarchy of uterotonics required for successful parturition in mice.

Endocrinology 2019 September 14
Parturition is an essential process in placental mammals for giving birth to offspring. However, the molecular machineries of parturition are not fully understood. We investigated whether oxytocin plays a crucial role in the progress of parturition in cooperation with the prostaglandin F2α (PGF2α) receptor. We first examined alterations in the expression of uterine contraction-associated genes in uteri of oxytocin receptor-deficient mice (Oxtr-/-) during parturition. We found that induction of COX-2 and connexin43 expression was impaired in Oxtr-/-, while that of PGF2α receptor expression was not. We next generated mice with double knockout of genes for the oxytocin receptor/oxytocin and PGF2α receptor (Oxtr-/-;Ptgfr-/- and Oxt-/-;Ptgfr-/-) and evaluated their parturition with Oxtr-/-, Oxt-/-, Ptgfr-/- and wild-type mice. In Oxtr-/-;Ptgfr-/- and Oxt-/-;Ptgfr-/-, pregnancy rates were similar to those of other genotypes. However, normal parturition was not observed in Oxtr-/-;Ptgfr-/- or Oxt-/-;Ptgfr-/- because of persistent progesterone from the corpus luteum, as observed in Ptgfr-/-. We administered RU486, a progesterone antagonist, to Ptgfr-/-, Oxtr-/-;Ptgfr-/- and Oxt-/-;Ptgfr-/- on gestation day 19. These mice were able to deliver a living first pup and the parturition onset was similar to that in Ptgfr-/-. Meanwhile, unlike Ptgfr-/-, approximately 75% of Oxtr-/-;Ptgfr-/- and Oxt-/-;Ptgfr-/- administered RU486 remained in labor at 24 hours after the onset of parturition. All of the pups that experienced prolonged labor died. We thus revealed that the oxytocin receptor is an upstream regulator of COX-2 and connexin43 in the uterus during parturition and that both oxytocin/oxytocin receptor and PGF2α receptor are major components for successful parturition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app