JOURNAL ARTICLE
OBSERVATIONAL STUDY
Add like
Add dislike
Add to saved papers

Circuit Hemodynamics and Circuit Failure During Continuous Renal Replacement Therapy.

OBJECTIVES: To study hemodynamic changes within continuous renal replacement therapy circuits and evaluate their relationship with continuous renal replacement therapy longevity.

DESIGN: Analysis of downloaded variables recorded by continuous renal replacement therapy machines during multiple episodes of clinical care.

SETTING: Tertiary ICU in Melbourne, Australia.

PATIENTS: Cohort of 149 ICU patients: 428 episodes of continuous renal replacement therapy.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: Indices of continuous renal replacement therapy function representing 554,991 minutes were assessed including blood flow, access pressure, effluent pressure, prefilter pressure, and return pressure. We defined three patterns of artificial kidney failure: early (≤ 12 hr), intermediate (> 12-24 hr), and late (> 24 hr) in 35%, 31%, and 34% of circuits, respectively. Mean access pressure in late artificial kidney failure was 7.5 mm Hg (7.1-7.9 mm Hg) less negative than early failing circuits and pressures demonstrated lower variability in such late failing circuits. Access dysfunction, defined as access pressure less than or equal to -200 mm Hg occurred in the first 4 hours in 118 circuits (27%) which had a shorter (median [interquartile range]) life at 12.9 hr [5.5-21.3 hr]) hours than access dysfunction-free circuits (18.8 hr [10.1-33.4 hr]; p < 0.0001). Multivariate analysis found the first occurrence of access dysfunction (as a time-varying covariate) was independently associated with increased hazard of subsequent failure (hazard ratio, 1.75; 1.36-2.26). Classification and regression tree analysis of summary pressure indices in the first 2 hours confirmed minimum access pressure to be a significant predictor, as well as indices of transmembrane pressure and return pressure. A pressure-based predictor correctly identified early and late failing circuits (86.2% and 93.6% specificity, respectively).

CONCLUSIONS: Access dysfunction is a predictor of continuous renal replacement therapy circuit failure. Future monitoring of continuous renal replacement therapy hemodynamics may facilitate remedial actions to improve circuit function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app