Add like
Add dislike
Add to saved papers

Fluid dynamics of thoracic cavity venous flow in multiple sclerosis.

Medical Hypotheses 2019 October
This paper hypothesizes, based on fluid dynamics principles, that in multiple sclerosis (MS) non-laminar, vortex blood flow occurs in the superior vena cava (SVC) and brachiocephalic veins (BVs), particularly at junctions with their tributary veins. The physics-based analysis demonstrates that the morphology and physical attributes of the major thoracic veins, and their tributary confluent veins, together with the attributes of the flowing blood, predict transition from laminar to non-laminar flow, primarily vortex flow, at select vein curvatures and junctions. Non-laminar, vortex flow results in the development of immobile stenotic valves and intraluminal flow obstructions, particularly in the internal jugular veins (IJVs) and in the azygos vein (AV) at their confluences with the SVC or BVs. Clinical trials' observations of vascular flow show that regions of low and reversing flow are associated with endothelial malformation. The physics-based analysis predicts the growth of intraluminal flaps and septa at segments of vein curvature and flow confluences. The analysis demonstrates positive correlations between predicted and clinically observed elongation of valve leaflets and between the predicted and observed prevalence of immobile valves at various venous flow confluences. The analysis predicts the formation of sclerotic plaques at venous junctions and curvatures, in locations that are analogous to plaques in atherosclerosis. The analysis predicts that increasing venous compliance increases the laminarity of venous flow and reduces the prevalence and severity of vein malformations and plaques, a potentially significant clinical result. An over-arching observation is that the correlations between predicted phenomena and clinically observed phenomena are sufficiently positive that the physics-based approach represents a new means for understanding the relationships between venous flow in MS and clinically observed venous malformations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app