Add like
Add dislike
Add to saved papers

Withdrawal from an opioid induces a transferable memory trace in the cerebrospinal fluid.

Pain 2019 August 20
Opioids are the most powerful analgesics available to date. However, they may also induce adverse effects including paradoxical opioid-induced hyperalgesia (OIH). A mechanism that might underlie OIH is the amplification of synaptic strength at spinal C-fibre synapses after withdrawal from systemic opioids such as remifentanil ("opioid-withdrawal-LTP").Here, we show that both, the induction as well as the maintenance of opioid-withdrawal-LTP were abolished by pharmacological blockade of spinal glial cells. In contrast, the blockade of TLR4 had no effect on the induction of opioid-withdrawal-LTP. D-serine, which may be released upon glial cell activation, was necessary for withdrawal-LTP. D-serine is the dominant co-agonist for neuronal NMDA-receptors, which are required for the amplification of synaptic strength upon remifentanil withdrawal.Unexpectedly, opioid-withdrawal-LTP was transferable via the cerebrospinal fluid between animals. This suggests that glial cell-derived mediators accumulate in the extracellular space and reach the cerebrospinal fluid at biologically active concentrations, thereby creating a soluble memory trace that is transferable to another animal ("transfer-LTP"). When we enzymatically degraded D-serine in the superfusate, LTP could no longer be transferred. Transfer-LTP was insensitive to pharmacological blockade of glial cells in the recipient animal, thus representing a rare form of glial-cell independent LTP in the spinal cord.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app