Add like
Add dislike
Add to saved papers

HSP90 inhibitors diminish PDGF-BB-induced migration of osteoblasts via suppression of p44/p42 MAP kinase.

Migration of osteoblasts to the sites resorbed by osteoclasts is an essential step in bone remodeling. However, the exact mechanism of osteoblast migration is still not known. We have shown that platelet-derived growth factor (PDGF)-BB induces the migration of osteoblast-like MC3T3-E1 cells through the activation of p38 mitogen-activated protein (MAP) kinase, c-Jun N-terminal kinase (JNK) and p44/p42 MAP kinase. Evidence is accumulating that heat shock protein 90 (HSP90) acts as a central regulator of proteostasis under stress conditions and physiological cell functions. In the present study, using transwell cell migration assay and wound-healing assay, we investigated the involvement of HSP90 in the PDGF-BB-stimulated migration of MC3T3-E1 cells, and the underlying signaling mechanism estimated by Western blot analyses. Onalespib, an HSP90 inhibitor, significantly reduced the PDGF-BB-stimulated migration evaluated by the two types of migration assays. The cell migration was also suppressed by geldanamycin, another type of HSP90 inhibitor. Onalespib markedly attenuated the PDGF-BB-elicited phosphorylation of p44/p42 MAP kinase without affecting that of p38 MAP kinase or JNK. In addition, the phosphorylation of p44/p42 MAP kinase by PDGF-BB was reduced by geldanamycin. Taken together, these results strongly suggest that HSP90 inhibitors suppress the PDGF-BB-induced osteoblast migration through the attenuation of p44/p42 MAP kinase activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app