Add like
Add dislike
Add to saved papers

Prolonged exposure to hypoxia induces an autophagy-like cell survival program in human neutrophils.

Neutrophils contribute to low oxygen availability at inflammatory sites through the generation of reactive oxidants. They are also functionally affected by hypoxia, which delays neutrophil apoptosis. However, the eventual fate of neutrophils in hypoxic conditions is unknown and this is important for their effective clearance and the resolution of inflammation. We have monitored the survival and function of normal human neutrophils exposed to hypoxia over a 48 h period. Apoptosis was delayed, and the cells remained intact even at 48 h. However, hypoxia promoted significant changes in neutrophil morphology with the appearance of many new cytoplasmic vesicles, often containing cell material, within 5 hours of exposure to low O2 . This coincided with an increase in LC3B-II expression, indicative of autophagosome formation and an autophagy-like process. In hypoxic conditions, neutrophils preferentially lost myeloperoxidase, a marker of azurophil granules. Short-term (2 h) hypoxic exposure resulted in sustained potential to generate superoxide when O2 was restored, but the capacity for oxidant production was lost with longer periods of hypoxia. Phagocytic ability was unchanged by hypoxia, and bacterial killing by neutrophils in both normoxic and hypoxic conditions was substantially diminished after 24 hours. However, pre-exposure to hypoxia resulted in an enhanced ability to kill bacteria by oxidant-independent mechanisms. Our data provide the first evidence for hypoxia as a driver of neutrophil autophagy that can influence the function and ultimate fate of these cells, including their eventual clearance and the resolution of inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app