Add like
Add dislike
Add to saved papers

Damage to leaf veins suppresses root foraging precision.

PREMISE: Plants generally increase root growth in areas with high nutrients in heterogeneous soils, a phenomenon called foraging precision. The physiology of this process is not well understood, but it may involve shoot-root signaling via leaf veins. If this is true, then damage to leaf veins, but not to nearby mesophyll, would reduce plant foraging precision.

METHODS: To test this hypothesis, we imposed two leaf damage treatments on Plantago asiatica and Prunus jamasakura, removing either the tip of each main vein or mesophyll tissue between the veins with a 3-mm-diameter hole punch. After 30 days or 20 weeks of plant growth, we measured root biomass in the soil in response to soil nutrient concentration.

RESULTS: When leaf mesophyll was damaged, root biomass of both species was greater in nutrient-rich patches than in nutrient-poor patches. However, when leaf veins were damaged, root biomass was similar between patches.

CONCLUSIONS: These results suggest the importance of shoot-root signaling in plants, emphasizing that physiological processes are not necessarily restricted to single organs. The idea that herbivores that damage leaf veins may affect a plant's ability to selectively forage in high-nutrient patches is novel, with implications for natural and managed systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app