JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Cardiovascular and Renal Benefits of SGLT2 Inhibitors: A Narrative Review.

CONTEXT: Most recently developed anti-hyperglycemic drugs have offered cardiovascular and renal benefits. In this narrative review, we discuss the cardiovascular and renal benefits of novel antidiabetic drugs, sodium glucose cotransporter type 2 (SGLT2) inhibitors, in type 2 diabetes.

EVIDENCE ACQUISITION: The literature published in PubMed, Scopus, Web of Science, Google Scholar, and Cochrane library were reviewed up to January 2019. The keywords including SGLT2 inhibitor, type 2 diabetes, cardiovascular effect, and renal effect were used in different combinations.

RESULTS: Cardiovascular disease represents a large health burden in patients with diabetes. The prevention of cardiovascular events is a major concern in the treatment of patients with diabetes. Diabetes is also associated with an increased risk of adverse renal events and diabetic nephropathy is the leading cause of end-stage renal disease worldwide. SGLT2 inhibitors as new glucose-lowering agents act by inhibiting glucose reabsorption in the proximal tubule of the kidney, which is independent of insulin secretion. We reviewed the cardiovascular effects of these drugs including effects on triple MACE (major adverse cardiovascular events), myocardial infarction, heart failure, cardiovascular and all-cause mortality, and stroke, as well as renal effects including albuminuria, serum creatinine, the rate of renal replacement therapy, and renal function over time, along with the mechanisms of these effects.

CONCLUSIONS: Given the suboptimal glycemic and cardiovascular risk control in type 2 diabetes, novel therapies such as SGLT2 inhibitors seem to have an important clinical advantage to improve glycemic control and cardiovascular and renal outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app