Add like
Add dislike
Add to saved papers

Thiamin and protein folding.

Medical Hypotheses 2019 August
A huge number of proteins that occur in the body have to be folded into a specific shape in order to become functional. Proteins are made up of chains of amino acids and the folding process is exquisitely complex. When this folding process is inhibited, the respective protein is referred to as being misfolded and nonfunctional. So the hypothesis that follows is in regard to the diseases that are caused by the misfolding of vital proteins and their reported relationship with thiamin metabolism. These diseases are termed proteopathies and there are at least 50 different conditions in which the mechanism is importantly related to a misfolded protein. In the brain, thiamin deficiency causes a cascade of events involving mild impairment of oxidative metabolism, neuroinflammation and neurodegeneration, including the pathology of Alzheimer's disease, Parkinson's and Huntington's diseases, all of which are examples of proteopathies. Prion diseases are fatal neurodegenerative disorders related to the conformational alteration of the prion protein (PrP C) into a pathogenic and protease-resistant isoform (PrPSc). The physiological form (PrP C) is a cell surface glycoprotein expressed mainly in the central nervous system. Despite numerous efforts to elucidate its role, the exact biological function remains unknown. Prion-induced diseases, due to the conformational change in the protein, are a global health problem, with lack of effective therapy and 100% mortality. Thiamin and its derivatives bind the prion protein and intermolecular actions have been noted between thiamin and other thiamin-binding proteins, although the exact importance of this is conjectural.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app