Add like
Add dislike
Add to saved papers

Nonlinear mixed-effects pharmacokinetic modeling of the novel COX-2 selective inhibitor vitacoxib in dogs.

The objective of this study was to develop a nonlinear mixed-effects model of vitacoxib disposition kinetics in dogs after intravenous (I.V.), oral (P.O.), and subcutaneous (S.C.) dosing. Data were pooled from four consecutive pharmacokinetic studies in which vitacoxib was administered in various dosing regimens to 14 healthy beagle dogs. Plasma concentration versus time data were fitted simultaneously using the stochastic approximation expectation maximization (SAEM) algorithm for nonlinear mixed-effects as implemented in Monolix version 2018R2. Correlations between random effects and significance of covariates on population parameter estimates were evaluated using multiple samples from the posterior distribution of the random effects. A two-compartment mamillary model with first-order elimination and first-order absorption after P.O. and S.C. administration, best described the available pharmacokinetic data. Final parameter estimates indicate that vitacoxib has a low-to-moderate systemic clearance (0.35 L hr-1  kg-1 ) associated with a low global extraction ratio, but a large volume of distribution (6.43 L/kg). The absolute bioavailability after P.O. and S.C. administration was estimated at 10.5% (fasted) and 54.6%, respectively. Food intake was found to increase vitacoxib oral bioavailability by a fivefold, while bodyweight (BW) had a significant impact on systemic clearance, thereby confirming the need for BW adjustment with vitacoxib dosing in dogs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app