Add like
Add dislike
Add to saved papers

Compound heterozygosity for TNXB genetic variants in a mixed-breed dog with Ehlers-Danlos syndrome.

Animal Genetics 2019 July 32
The Ehlers-Danlos syndromes (EDSs) are a heterogeneous group of inherited connective tissue disorders characterized by skin hyperextensibility, joint hypermobility and tissue fragility. Inherited disorders similar to human EDS have been reported in different mammalian species. In the present study, we investigated a female mixed-breed dog with clinical signs of EDS. Whole-genome sequencing of the affected dog revealed two missense variants in the TNXB gene, encoding the extracellular matrix protein tenascin XB. In humans, TNXB genetic variants cause classical-like EDS or the milder hypermobile EDS. The affected dog was heterozygous at both identified variants. Each variant allele was transmitted from one of the case's parents, consistent with compound heterozygosity. Although one of the variant alleles, XM_003431680.3:c.2012G>A, p.(Ser671Asn), was private to the family of the affected dog and absent from whole-genome sequencing data of 599 control dogs, the second variant allele, XM_003431680.3:c.2900G>A, p.(Gly967Asp), is present at a low frequency in the Chihuahua and Poodle population. Given that TNXB is a functional candidate gene for EDS, we suggest that compound heterozygosity for the identified TNXB variants may have caused the EDS-like phenotype in the affected dog. Chihuahuas and Poodles should be monitored for EDS cases, which might confirm the hypothesized pathogenic effect of the segregating TNXB variant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app