Add like
Add dislike
Add to saved papers

Bioenergetic basis of skeletal muscle fatigue.

Energetic demand from high-intensity exercise can easily exceed ATP synthesis rates of mitochondria leading to a reliance on anaerobic metabolism. The reliance on anaerobic metabolism results in the accumulation of intracellular metabolites, namely inorganic phosphate (Pi ) and hydrogen (H+ ), that are closely associated with exercise-induced reductions in power. Cellular and molecular studies have revealed several steps where these metabolites impair contractile function demonstrating a causal role in fatigue. Elevated Pi or H+ directly inhibits force and power of the cross-bridge and decreases myofibrillar Ca2+ sensitivity, whereas Pi also inhibits Ca2+ release from the sarcoplasmic reticulum (SR). When both metabolites are elevated, they act synergistically to cause marked reductions in power, indicating that fatigue during high-intensity exercise has a bioenergetic basis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app