Add like
Add dislike
Add to saved papers

Development of a bio-MEMS Device for Electrical and Mechanical Conditioning and Characterization of Cell Sheets for Myocardial Repair.

Here we propose a bio-MEMS device designed to evaluate contractile force and conduction velocity of cell sheets in response to mechanical and electrical stimulation of the cell source as it grows to form a cellular sheet. Moreover, the design allows for incorporation of patient-specific data and cell sources: an optimized device would allow cell sheets to be cultured, characterized, and conditioned to be compatible with a specific patient's cardiac environment in vitro, prior to implantation. This design draws upon existing methods in the literature but makes an important advance by combining the mechanical and electrical stimulation into a single system for optimized cell sheet growth. The device has been designed to achieve cellular alignment, electrical stimulation, mechanical stimulation, conduction velocity readout, contraction force readout, characterization, and eventually cell sheet release. The platform is based on a set of comb electrical contacts consisting of three-dimensional walls made of polydimethylsiloxane and coated with electrically conductive metals on the tops of the walls. Not only do the walls serve as a method for stimulating cells that are sitting on top of them, but their geometry is tailored such that they are flexible enough to be bent by the cells and used to measure force. The platform can be stretched via a linear actuator setup, allowing for simultaneous electrical and mechanical stimulation that can be derived from patient-specific clinical data. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app