Add like
Add dislike
Add to saved papers

Probing the nanoscale organisation and multivalency of cell surface receptors: DNA origami nanoarrays for cellular studies with single-molecule control.

Faraday Discussions 2019 July 18
Nanoscale organisation of receptor ligands has become an important approach to study the clustering behaviour of cell-surface receptors. Biomimetic substrates fabricated via different nanopatterning strategies have so far been applied to investigate specific integrins and cell types, but without multivalent control. Here we use DNA origami to surpass the limits of current approaches and fabricate nanoarrays to study different cell adhesion processes, with nanoscale spatial resolution and single-molecule control. Notably, DNA nanostructures enable the display of receptor ligands in a highly customisable manner, with modifiable parameters including ligand number, ligand spacing and most importantly, multivalency. To test the adaptability and robustness of the system we combined it with focused ion beam and electron-beam lithography nanopatterning to additionally control the distance between the origami structures (i.e. receptor clusters). Moreover, we demonstrate how the platform can be used to interrogate two different biological questions: (1) the cooperative effect of integrin and growth factor receptor in cancer cell spreading, and (2) the role of integrin clustering in cardiomyocyte adhesion and maturation. Thereby we find previously unknown clustering behaviour of different integrins, further outlining the importance for such customisable platforms for future investigations of specific receptor organisation at the nanoscale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app