JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Redox regulation of development and regeneration.

Oxygen is essential to contemporary life, providing the major electron sink underlying cellular energy metabolism. In addition to providing energy, largely involving redox reactions within mitochondria, oxidative metabolism produces reactive byproducts that are damaging to cellular components. Eukaryotic organisms have evolved multiple physiological mechanisms and signaling pathways to deal with fluctuating levels of oxygen and reactive oxygen species (ROS), and many of these are used in animals to regulate developmental processes. Here we review recent findings showing how mitochondria, ROS and hypoxia signaling contribute to the regulation of early axial patterning in embryos, to nervous system development, and to the regulation of cell proliferation and differentiation during development and regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app