Add like
Add dislike
Add to saved papers

IL13RA2 Is Differentially Regulated in Papillary Thyroid Carcinoma vs Follicular Thyroid Carcinoma.

CONTEXT: The interleukin-13 receptor alpha2 (IL13RA2), which is known to be overexpressed in glioblastoma multiforme, plays a role in various cellular processes such as cell migration that may contribute to tumor progression. Studies have attributed IL13RA2 to invasion and metastasis in cancers of the ovary, breast, and pancreas, but the pathological role of IL13RA2 in thyroid cancer is still unclear.

OBJECTIVE: This study aims to evaluate IL13RA2 expression in thyroid carcinomas and to examine the role of IL13RA2 in the progression of papillary thyroid carcinoma (PTC).

METHODS: IL13RA2 immunochemical staining was performed on tissue microarrays of 137 thyroid carcinomas from patients, and the differential profile of IL13RA2 was validated in thyroid cancer cell lines. In PTC cell lines, we functionally assessed the effects of IL13RA2 underexpression and overexpression on cell proliferation, cell migration, and epithelial-mesenchymal transition (EMT) by using CCK-8, transwell migration assay, quantitative RT-PCR, and Western blot analysis.

RESULTS: IL13RA2 expression was significantly correlated with advanced tumor T stage (pT3 or pT4; P = 0.001) and regional lymph node metastasis (pN1; P < 0.001). The staining scores of IL13RA2 were significantly higher in PTC compared with follicular subtypes (P < 0.001) and correlated with advanced tumor stage among PTC samples (pT3 or pT4; P = 0.028). Knockdown of IL13RA2 in B-CPAP cells significantly reduced cell viability, cell migration, and EMT markers including N-cadherin, Vimentin, and Snail. Exogenous overexpression of IL13RA2 in K1 cells increased cell migration and EMT, although cell proliferation was not affected.

CONCLUSION: IL13RA2 is differentially regulated in PTC and is involved in cell migration by enhancing EMT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app