CLINICAL TRIAL
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A New Method for Percutaneous Drug Delivery by Thermo-Mechanical Fractional Injury.

BACKGROUND AND OBJECTIVES: Percutaneous drug delivery (PDD) is a means of increasing the uptake of topically applied agents into the skin. Successful delivery of a photosensitizer into the skin is an important factor for effective photodynamic therapy. To evaluate the efficacy of pretreatment by thermomechanical fractional injury (TMFI) (Tixel®, Novoxel®, Israel) at low-energy settings in increasing the permeability of the skin to a known hydrophilic-photosensitizer medication, 5-amino-levulinic-acid hydrochloride (ALA) in compounded 20% ALA gel. To compare the effect of TMFI on ALA permeation into the skin in compounded gel to three commercial photosensitizing medications in different vehicles: ALA microemulsion gel, methyl-amino-levulinic-acid hydrochloride (MAL) cream, and ALA hydroalcoholic solution.

STUDY DESIGN/MATERIALS AND METHODS: Five healthy subjects were treated in two separate experiments and on a total of 136 test sites, with four topical photosensitizer preparations as follows: compounded 20% ALA gel prepared in a good manufacturing practice (GMP)-certified pharmacy (Super-Pharm Professional, Israel), 10% ALA microemulsion gel (Ameluz®, Biofrontera Bioscience GmbH, Leverkusen, Germany), 16.8% MAL cream (Metvix®, Galderma, Lausanne, Switzerland), and 20% ALA hydroalcoholic solution (Levulan Kerastick®, DUSA Pharmaceuticals, Inc., Wilmington, MA, USA). The dermal sites were pretreated by Tixel® (Novoxel® Ltd., Israel) prior to topical drug application. One site was untreated to serve as control. Protoporphyrin IX (PpIX) fluorescence intensity readouts were taken immediately and 1, 2, 3, 4, and 5 hours posttreatment.

RESULTS: The highest average PpIX fluorescence intensity measurements were obtained for the compounded 20% ALA gel following pre-treatment by TMFI at 6 milliseconds pulse duration. After 2 and 3 hours, TMFI-treated sites exhibited an increased hourly rate in readouts of FluoDerm units, which were 156-176% higher than the control rates (P ≤ 0.004). TMFI pre-treatment did not enhance the percutaneous permeation of either ALA or MAL following the microemulsion gel, hydroalcoholic solution, and cream applications.

CONCLUSIONS: Pretreatment with low-energy TMFI at a pulse duration of 6 milliseconds increased the percutaneous permeation of ALA linearly over the first 5 hours from application when the compounded 20% ALA gel was used. Formulation characteristics have substantial influence on the ability of TMFI pretreatment to significantly increase the percutaneous permeation of ALA and MAL. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app