Add like
Add dislike
Add to saved papers

Dendrimer-Enabled Therapeutic Antisense Delivery Systems as Innovation in Medicine.

Antisense oligonucleotide (AON)-based therapies concern the treatment for genetic disorders or infections such as a range of neurodegenerative and neuromuscular diseases and have shown benefits in animal models and patients. Nevertheless, successes in the clinic are still strongly limited by unfavorable biodistribution and poor cellular uptake of AONs. Dendrimer macromolecules are synthetically accessible and consist of a core with repeated iterations (named branches) surrounding this core, and on the periphery functional groups which can be modified for ligand attachment. The generations of these branched nanoparticles are based on the number of branches emanating from the core with layered architectures. Dendrimers show promise in several biomedical applications based on their tunable surface modifications allowing the adjustment of their in vivo behavior related to biocompatibility and pharmacokinetic parameters. Dendrimers can be used as nanocarriers of various types of drugs including AONs or nanodrugs. As nanocarriers, polycationic dendrimers can complex multiple negatively charged DNA oligonucleotides on their surface and form stable complexes to promote internalization into the cells based on a good cell membrane affinity. These nanocarriers complexing antisense oligonucleotides must be stable enough to reach the cellular target, but with adequate in vivo global clearance, and have good pharmacokinetic (PK) and pharmacodynamic (PD) profiles. This Review was designed to analyze the development of AONs carried by polycationic and polyanionic (few example) dendrimers. This Review strongly supports the idea that dendrimers, with adequate modulation of their terminal groups, could be used to carry AONs in cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app