Add like
Add dislike
Add to saved papers

Biological properties of electrospun cellulose scaffolds from biomass.

Nowadays the development of sustainable technologies for the effective production of polymeric materials that can be used as biomaterials will be of importance. In this work, cellulose (CEL) was purified from potato peel waste (PPW) and used to produce electrospun nanofibers for tissue engineering applications. The purified CEL was solubilized in copper ethylenediamine (Cuen) and the electrospun nanofibers was produced through electrospinning technique in diameter range of 250-500 nm at electrical field strength of 20 kV. To confirm the applicability of the electrospun CEL scaffolds in tissue engineering, in vitro BALB-3T3 fibroblastic cell adhesion and cell proliferation tests were employed in this study. Cell viability was evaluated by staining with ethidium bromide (EtBr) and acridine orange (AO) to evaluate the possible effects of cytotoxicity of the CNF scaffolds. Fluorescence studies confirmed that BALB-3T3 viable cells attached and spread throughout the CEL scaffold. The attachment and spreading of viable cells suggests that electrospun CEL scaffolds support growth of BALB-3T3 fibroblasts cells and suggests that PPW can be a useful source of raw material for the production of scaffolds for tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app